Definition for covectors ...
Definition for differential forms...
Proposition (anticommutativity)
If $f \in A_k(V)$ and $g \in A_l(V)$ then $f \wedge g = (-1)^{kl} g \wedge f$.
$\blacksquare$
Interpretation: see visualization of k-forms.
Important fact: Wedge product of two 1-forms:
$$ \alpha\wedge\beta = \sum_{1\le iIt is also deduced from the anticommutativity:
$$ \alpha \wedge \alpha=-\alpha\wedge \alpha \implies \alpha \wedge \alpha=0 $$________________________________________
________________________________________
________________________________________
Author of the notes: Antonio J. Pan-Collantes
INDEX: